Random Trigonometric Polynomials with Nonidentically Distributed Coefficients

نویسندگان

  • K. Farahmand
  • T. Li
چکیده

This paper provides asymptotic estimates for the expected number of real zeros of two different forms of random trigonometric polynomials, where the coefficients of polynomials are normally distributed random variables with different means and variances. For the polynomials in the form of a0 a1 cos θ a2 cos 2θ · · · an cosnθ and a0 a1 cos θ b1 sin θ a2 cos 2θ b2 sin 2θ · · · an cosnθ bn sinnθ,we give a closed form for the above expected value. With some mild assumptions on the coefficients we allow the means and variances of the coefficients to differ from each others. A case of reciprocal random polynomials for both above cases is studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Upcrossings of Trigonometric Polynomials with Random Coefficients

• Polynomials are one of the oldest and the most versatile classes of functions which are fundamental in approximating highly complex, deterministic as well as random nonlinear functions and systems. Their use has been acknowledged in every scientific field from physics to ecology. Just to emphasize their great use in many fields, we mention their fundamental role in linear and non-linear time ...

متن کامل

Algebraic Polynomials with Random Coefficients with Binomial and Geometric Progressions

The expected number of real zeros of an algebraic polynomial ao a1x a2x · · · anx with random coefficient aj , j 0, 1, 2, . . . , n is known. The distribution of the coefficients is often assumed to be identical albeit allowed to have different classes of distributions. For the nonidentical case, there has been much interest where the variance of the jth coefficient is var aj ( n j ) . It is sh...

متن کامل

Research Article On Zeros of Self-Reciprocal Random Algebraic Polynomials

This paper provides an asymptotic estimate for the expected number of level crossings of a trigonometric polynomial TN (θ)= ∑N−1 j=0 {αN− j cos( j +1/2)θ + βN− j sin( j +1/2)θ}, where αj and βj , j = 0,1,2, . . . ,N − 1, are sequences of independent identically distributed normal standard random variables. This type of random polynomial is produced in the study of random algebraic polynomials w...

متن کامل

Some New Inequalities for Trigonometric Polynomials with Special Coefficients

Some new inequalities for certain trigonometric polynomials with complex semiconvex and complex convex coefficients are given.

متن کامل

Bernstein Inequalities for Polynomials with Constrained Roots

We prove Bernstein type inequalities for algebraic polynomials on the finite interval I := [−1, 1] and for trigonometric polynomials on R when the roots of the polynomials are outside of a certain domain of the complex plane. The case of real vs. complex coefficients are handled separately. In case of trigonometric polynomials with real coefficients and root restriction, the Lpsituation will al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010